D&D2 - Metal Alloys
Group Leaders
Related publications (until January 2023)
- D. Marchand, W. A. Curtin, Machine learning for metallurgy IV: A neural network potential for Al-Cu-Mg and Al-Cu-Mg-Zn, Physical Review Materials 6, 053803 (2022). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, G. Csányi, Gaussian Process Regression for Materials and Molecules, Chemical Reviews 121, 10073–10141 (2021).
Group(s): Ceriotti / Project(s): DD2 - G. Imbalzano, M. Ceriotti, Modeling the Ga/As binary system across temperatures and compositions from first principles, Physical Review Materials 5, 063804 (2021). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Ceriotti / Project(s): DD2 - F. Giberti, G. A. Tribello, M. Ceriotti, Global Free-Energy Landscapes as a Smoothly Joined Collection of Local Maps, Journal of Chemical Theory and Computation 17, 3292–3308 (2021).
Dataset on Materials Cloud.
Group(s): Ceriotti / Project(s): DD2 - N. Lopanitsyna, C. B. Mahmoud, M. Ceriotti, Finite-temperature materials modeling from the quantum nuclei to the hot electron regime, Physical Review Materials 5, 043802 (2021).
Dataset on Materials Cloud.
Group(s): Ceriotti / Project(s): DD2 - F. Musil, M. Veit, A. Goscinski, G. Fraux, M. J. Willatt, M. Stricker, T. Junge, M. Ceriotti, Efficient implementation of atom-density representations, The Journal of Chemical Physics 154, 114109 (2021).
Group(s): Ceriotti, Curtin / Project(s): DD2 - G. Imbalzano, Y. Zhuang, V. Kapil, K. Rossi, E. A. Engel, F. Grasselli, M. Ceriotti, Uncertainty estimation for molecular dynamics and sampling, The Journal of Chemical Physics 154, 074102 (2021). [Open Access URL]
Group(s): Ceriotti / Project(s): DD2 - Y. Hu, W. A. Curtin, Modeling peak-aged precipitate strengthening in Al–Mg–Si alloys, Journal of the Mechanics and Physics of Solids 151, 104378 (2021). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - A. C. P. Jain, D. Marchand, A. Glensk, M. Ceriotti, W. A. Curtin, Machine learning for metallurgy III: A neural network potential for Al-Mg-Si, Physical Review Materials 5, 053805 (2021). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Ceriotti, Curtin / Project(s): DD2 - V. L. Deringer, N. Bernstein, G. Csányi, C. Ben Mahmoud, M. Ceriotti, M. Wilson, D. A. Drabold, S. R. Elliott, Origins of structural and electronic transitions in disordered silicon, Nature 589, 59–64 (2021). [Open Access URL]
Dataset on Zenodo.
Group(s): Ceriotti / Project(s): DD2 - B. Yin, S. Yoshida, N. Tsuji, W. A. Curtin, Yield strength and misfit volumes of NiCoCr and implications for short-range-order, Nature Communications 11, 2507 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - M. Stricker, B. Yin, E. Mak, W. A. Curtin, Machine learning for metallurgy II. A neural-network potential for magnesium, Physical Review Materials 4, 103602 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - J. Nigam, S. Pozdnyakov, M. Ceriotti, Recursive evaluation and iterative contraction of N-body equivariant features, The Journal of Chemical Physics 153, 121101 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Ceriotti / Project(s): DD2 - M. Zamani, G. Imbalzano, N. Tappy, D. T. L. Alexander, S. Martí-Sánchez, L. Ghisalberti, Q. M. Ramasse, M. Friedl, G. Tütüncüoglu, L. Francaviglia, S. Bienvenue, C. Hébert, J. Arbiol, M. Ceriotti, A. F. i. Morral, 3D Ordering at the Liquid-Solid Polar Interface of Nanowires, Advanced Materials 32, 2001030 (2020). [Open Access URL]
Group(s): Ceriotti / Project(s): DD2 - D. Marchand, A. Jain, A. Glensk, W. A. Curtin, Machine learning for metallurgy I. A neural-network potential for Al-Cu, Physical Review Materials 4, 103601 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - M. Stricker, W. A. Curtin, Prismatic Slip in Magnesium, The Journal of Physical Chemistry C 124, 27230 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - B. Yin, F. Maresca, W. A. Curtin, Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys, Acta Materialia 188, 486 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - B. Yin, W. A. Curtin, Origin of high strength in the CoCrFeNiPd high-entropy alloy, Materials Research Letters 8, 209 (2020). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - Y. Hu, B. A. Szajewski, D. Rodney, W. A. Curtin, Atomistic dislocation core energies and calibration of non-singular discrete dislocation dynamics, Modelling and Simulation in Materials Science and Engineering 28, 015005 (2020). [Open Access URL]
Group(s): Curtin / Project(s): DD2 - T. Würger, C. Feiler, F. Musil, G. B. V. Feldbauer, D. Höche, S. V. Lamaka, M. L. Zheludkevich, R. H. Meißner, Data Science Based Mg Corrosion Engineering, Frontiers in Materials 6, 53 (2019). [Open Access URL]
Group(s): Ceriotti / Project(s): DD2 - F. Musil, M. J. Willatt, M. A. Langovoy, M. Ceriotti, Fast and Accurate Uncertainty Estimation in Chemical Machine Learning, Journal of Chemical Theory and Computation 15, 906–915 (2019). [Open Access URL]
Group(s): Ceriotti, Jaggi / Project(s): DD2 - B. Yin, W. A. Curtin, First-principles-based prediction of yield strength in the RhIrPdPtNiCu high entropy alloy, npj Computational Materials 5, 14 (2019). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - P. Andric, B. Yin, W. A. Curtin, Stress-dependence of generalized stacking fault energies, Journal of the Mechanics and Physics of Solids 122, 262–279 (2019). [Open Access URL]
Dataset on Materials Cloud.
Group(s): Curtin / Project(s): DD2 - F. Maresca, D. Dragoni, G. Csányi, N. Marzari, W. A. Curtin, Screw dislocation structure and mobility in body centered cubic Fe predicted by a Gaussian Approximation Potential, npj Computational Materials 4, 69 (2018). [Open Access URL]
Group(s): Curtin, Marzari / Project(s): DD2 - M. J. Willatt, F. Musil, M. Ceriotti, Feature Optimization for Atomistic Machine Learning Yields a Data-Driven Construction of the Periodic Table of the Elements, Physical Chemistry Chemical Physics 20, 29661–29668 (2018). [Open Access URL]
Group(s): Ceriotti / Project(s): DD1, DD2