About

The NCCR MARVEL is a centre on Computational Design and Discovery of Novel Materials [1, 2, 3] created by the Swiss National Science Foundation in May 2014.

MARVEL targets the accelerated design and discovery of novel materials, via a materials’ informatics platform of database-driven high-throughput quantum simulations, powered by

  • advanced electronic-structure capabilities, for predictive accuracy
  • innovative sampling methods to explore configuration/composition space
  • application of big-data concepts to computational materials science

The search is focused on materials for energy harvesting, storage, and conversion, materials for information-and-communication technologies, and organic crystals/pharmaceuticals.

Codes, data and workflows of the project are disseminated through the Materials Cloud platform and the Quantum Mobile virtual machine, both powered by the materials' informatics framework AiiDA.

Group photo made at the 2017 Review and Retreat that gathers all the MARVEL members.

The members of NCCR MARVEL at the 2017 Review and Retreat

MARVEL is directed by Nicola Marzari and EPFL acts as the leading house, but the NCCR involves 25 principal investigators across 8 Swiss Institutions:


Projects and group leaders involved in phase II

Design & Discovery 1 — Understanding Complex Molecular Crystals: Structure and Properties 

  • Project leader: Michele Ceriotti (EPFL)
  • Computational co-applicants: Clemence Corminboeuf (EPFL), Stefan Goedecker (UniBas), Michele Parrinelo (USI/ETHZ)
  • Partners: Esther Amstad (EPFL), Lyndon Emsley (EPFL)

Design & Discovery 2 — From Atoms to Additive Manufacturing: Computational Design of Complex Metal Alloys  

  • Project leader: William A. Curtin (EPFL)
  • Computational co-applicants: Michele Ceriotti (EPFL), Anatole von Lilienfeld (UniBAS)
  • Partners: Helena Van Swygenhoven (PSI), Christian Leinenbach (Empa)

Design & Discovery 3 — MARLON: MARVEL Design, Discovery and Engineering of Low-Dimensional Materials and Nanostructures

  • Project leader: Nicola Marzari (EPFL)
  • Computational co-applicants: Daniele Passerone (Empa), Mathieu Luisier (ETHZ), Alfredo Pasquarello
    (EPFL), Clemence Corminboeuf (EPFL
  • Partners: Kumar Agrawal (EPFL), Andras Kis (EPFL), Alexandra Radenovic (EPFL),
    Oliver Groning (Empa), Roman Fasel (Empa)

Design & Discovery 4 — Nanoporous Materials Genome: Optical, Catalytic and Electronic Properties

  • Project leader: Berend Smit (EPFL)
  • Computational co-applicants: Jurg Hutter (UZH), Alfredo Pasquarello (EPFL), Ivano Tavernelli (IBM)
  • Partners: Marco Ranocchiari (PSI), Piero Macchi (UniBE), Kyriakos Stylianou (EPFL) 

Design & Discovery 5 — Correlated Transition Metal Oxides and Heterostructures 

  • Project leader: Nicola Spaldin (ETHZ)
  • Computational co-applicants: Ulrich Aschauer (UniBE), Claude Ederer (ETHZ), Philipp Werner (UniFR)
  • Partners: Marisa Medarde (PSI), Urs Staub (PSI)

Design & Discovery 6 — Search for Novel Topological Materials

  • Project leader: Oleg Yazyev (EPFL)
  • Computational co-applicant: Alexey Soluyanov (ETHZ)
  • Partners: Ming Shi (PSI), Hugo Dil (EPFL), Christian Ruegg (PSI and UniGE), Arnaud Magrez (EPFL) 

Incubator 1 — Design and Discovery of Novel Solid-State Ionic Conductors

  • Project leader: Teodoro Laino (IBM)
  • Computational co-applicant: Nicola Marzari (EPFL)
  • Partners: Daniele Pergolesi (PSI), Claire Villevieille (PSI) 

Incubator 2 — Active Machine Learning for Computational Materials Design

  • Project leader: Anatole von Lilienfeld (UniBas)
  • Computational co-applicants: Volker Roth (UniBas), Michele Ceriotti (EPFL) 

Open Science Platform

  • Project leader: Giovanni Pizzi (EPFL) 

HPC and Future Architectures

  • Project leaders: Joost VandeVondele (CSCS), Thomas Schulthess (CSCS and ETHZ) 

[1] Materials' revolution: Computational Design and Discovery of Novel Materials

[2] La révolution des matériaux: conception et découverte de nouveaux matériaux par la simulation

[3] Materialrevolution: Computerbasierte Entwicklung und Entdeckung neuer Materialien